Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Sci Rep ; 13(1): 9171, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: covidwho-20235416

RESUMO

Throughout the pandemic era, COVID-19 was one of the remarkable unexpected situations over the past few years, but with the decentralization and globalization of efforts and knowledge, a successful vaccine-based control strategy was efficiently designed and applied worldwide. On the other hand, excused confusion and hesitation have widely impacted public health. This paper aims to reduce COVID-19 vaccine hesitancy taking into consideration the patient's medical history. The dataset used in this study is the Vaccine Adverse Event Reporting System (VAERS) dataset which was created as a corporation between the Food and Drug Administration (FDA) and Centers for Disease Control and Prevention (CDC) to gather reported side effects that may be caused by PFIEZER, JANSSEN, and MODERNA vaccines. In this paper, a Deep Learning (DL) model has been developed to identify the relationship between a certain type of COVID-19 vaccine (i.e. PFIEZER, JANSSEN, and MODERNA) and the adverse reactions that may occur in vaccinated patients. The adverse reactions under study are the recovery condition, possibility to be hospitalized, and death status. In the first phase of the proposed model, the dataset has been pre-proceesed, while in the second phase, the Pigeon swarm optimization algorithm is used to optimally select the most promising features that affect the performance of the proposed model. The patient's status after vaccination dataset is grouped into three target classes (Death, Hospitalized, and Recovered). In the third phase, Recurrent Neural Network (RNN) is implemented for both each vaccine type and each target class. The results show that the proposed model gives the highest accuracy scores which are 96.031% for the Death target class in the case of PFIEZER vaccination. While in JANSSEN vaccination, the Hospitalized target class has shown the highest performance with an accuracy of 94.7%. Finally, the model has the best performance for the Recovered target class in MODERNA vaccination with an accuracy of 97.794%. Based on the accuracy and the Wilcoxon Signed Rank test, we can conclude that the proposed model is promising for identifying the relationship between the side effects of COVID-19 vaccines and the patient's status after vaccination. The study displayed that certain side effects were increased in patients according to the type of COVID-19 vaccines. Side effects related to CNS and hemopoietic systems demonstrated high values in all studied COVID-19 vaccines. In the frame of precision medicine, these findings can support the medical staff to select the best COVID-19 vaccine based on the medical history of the patient.


Assuntos
COVID-19 , Aprendizado Profundo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Vacinas , Estados Unidos , Humanos , Vacinas contra COVID-19/efeitos adversos , COVID-19/prevenção & controle , Saúde Pública , Vacinação/efeitos adversos
2.
Soft comput ; 27(13): 9221, 2023.
Artigo em Inglês | MEDLINE | ID: covidwho-20232979

RESUMO

[This retracts the article DOI: 10.1007/s00500-021-06103-7.].

3.
Interactive Learning Environments ; 31(3):1293-1308, 2023.
Artigo em Inglês | Academic Search Complete | ID: covidwho-2312308

RESUMO

This study seeks to explore the effect of fear emotion on students' and teachers' technology adoption during COVID-19 pandemic. The study has made use of Google Meet© as an educational social platform in private higher education institutes. The data obtained from the study were analyzed by using the partial least squares structural equation modeling (PLS-SEM) and machine learning algorithms. The main hypotheses of this study are related to the effect of COVID-19 on the adoption of Google Meet as COVID-19 rise s various types of fear. During the Coronavirus pandemic, fear due to family lockdown situation, fear of education failure and fear of losing social relationships are the most common types of threat that may face students and teachers/educators. These types of fears are connected with two important factors within TAM theory, which are: perceived ease of use (PEOU) and perceived usefulness (PU), and with another external factor of TAM, which is subjective norm (SN). The results revealed that both data analysis techniques have successfully provided support to all the hypothesized relationships of the research model. More interesting, the J48 classifier has performed better than the other classifiers in predicting the dependent variable in most cases. [ FROM AUTHOR] Copyright of Interactive Learning Environments is the property of Routledge and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

4.
Soft comput ; : 1-16, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: covidwho-2251396

RESUMO

The highly spreading virus, COVID-19, created a huge need for an accurate and speedy diagnosis method. The famous RT-PCR test is costly and not available for many suspected cases. This article proposes a neurotrophic model to diagnose COVID-19 patients based on their chest X-ray images. The proposed model has five main phases. First, the speeded up robust features (SURF) method is applied to each X-ray image to extract robust invariant features. Second, three sampling algorithms are applied to treat imbalanced dataset. Third, the neutrosophic rule-based classification system is proposed to generate a set of rules based on the three neutrosophic values < T; I; F>, the degrees of truth, indeterminacy falsity. Fourth, a genetic algorithm is applied to select the optimal neutrosophic rules to improve the classification performance. Fifth, in this phase, the classification-based neutrosophic logic is proposed. The testing rule matrix is constructed with no class label, and the goal of this phase is to determine the class label for each testing rule using intersection percentage between testing and training rules. The proposed model is referred to as GNRCS. It is compared with six state-of-the-art classifiers such as multilayer perceptron (MLP), support vector machines (SVM), linear discriminant analysis (LDA), decision tree (DT), naive Bayes (NB), and random forest classifiers (RFC) with quality measures of accuracy, precision, sensitivity, specificity, and F1-score. The results show that the proposed model is powerful for COVID-19 recognition with high specificity and high sensitivity and less computational complexity. Therefore, the proposed GNRCS model could be used for real-time automatic early recognition of COVID-19.

5.
Cluster Comput ; : 1-15, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: covidwho-2247923

RESUMO

Coronavirus disease (COVID-19) is rapidly spreading worldwide. Recent studies show that radiological images contain accurate data for detecting the coronavirus. This paper proposes a pre-trained convolutional neural network (VGG16) with Capsule Neural Networks (CapsNet) to detect COVID-19 with unbalanced data sets. The CapsNet is proposed due to its ability to define features such as perspective, orientation, and size. Synthetic Minority Over-sampling Technique (SMOTE) was employed to ensure that new samples were generated close to the sample center, avoiding the production of outliers or changes in data distribution. As the results may change by changing capsule network parameters (Capsule dimensionality and routing number), the Gaussian optimization method has been used to optimize these parameters. Four experiments have been done, (1) CapsNet with the unbalanced data sets, (2) CapsNet with balanced data sets based on class weight, (3) CapsNet with balanced data sets based on SMOTE, and (4) CapsNet hyperparameters optimization with balanced data sets based on SMOTE. The performance has improved and achieved an accuracy rate of 96.58% and an F1- score of 97.08%, a competitive optimized model compared to other related models.

6.
Cluster Computing ; : 1-15, 2022.
Artigo em Inglês | EuropePMC | ID: covidwho-1998264

RESUMO

Coronavirus disease (COVID-19) is rapidly spreading worldwide. Recent studies show that radiological images contain accurate data for detecting the coronavirus. This paper proposes a pre-trained convolutional neural network (VGG16) with Capsule Neural Networks (CapsNet) to detect COVID-19 with unbalanced data sets. The CapsNet is proposed due to its ability to define features such as perspective, orientation, and size. Synthetic Minority Over-sampling Technique (SMOTE) was employed to ensure that new samples were generated close to the sample center, avoiding the production of outliers or changes in data distribution. As the results may change by changing capsule network parameters (Capsule dimensionality and routing number), the Gaussian optimization method has been used to optimize these parameters. Four experiments have been done, (1) CapsNet with the unbalanced data sets, (2) CapsNet with balanced data sets based on class weight, (3) CapsNet with balanced data sets based on SMOTE, and (4) CapsNet hyperparameters optimization with balanced data sets based on SMOTE. The performance has improved and achieved an accuracy rate of 96.58% and an F1- score of 97.08%, a competitive optimized model compared to other related models.

7.
Informatics ; 8(4):72, 2021.
Artigo em Inglês | MDPI | ID: covidwho-1488621

RESUMO

The fight against the COVID-19 pandemic still involves many struggles and challenges. The greatest challenge that most governments are currently facing is the lack of a precise, accurate, and automated mechanism for detecting and tracking new COVID-19 cases. In response to this challenge, this study proposes the first blockchain-based system, called the COVID-19 contact tracing system (CCTS), to verify, track, and detect new cases of COVID-19. The proposed system consists of four integrated components: an infection verifier subsystem, a mass surveillance subsystem, a P2P mobile application, and a blockchain platform for managing all transactions between the three subsystem models. To investigate the performance of the proposed system, CCTS has been simulated and tested against a created dataset consisting of 300 confirmed cases and 2539 contacts. Based on the metrics of the confusion matrix (i.e., recall, precision, accuracy, and F1 Score), the detection evaluation results proved that the proposed blockchain-based system achieved an average of accuracy of 75.79% and a false discovery rate (FDR) of 0.004 in recognizing persons in contact with COVID-19 patients within two different areas of infection covered by GPS. Moreover, the simulation results also demonstrated the success of the proposed system in performing self-estimation of infection probabilities and sending and receiving infection alerts in P2P communications in crowds of people by users. The infection probability results have been calculated using the binomial distribution function technique. This result can be considered unique compared with other similar systems in the literature. The new system could support governments, health authorities, and citizens in making critical decisions regarding infection detection, prediction, tracking, and avoiding the COVID-19 outbreak. Moreover, the functionality of the proposed CCTS can be adapted to work against any other similar pandemics in the future.

8.
Int J Imaging Syst Technol ; 32(2): 614-628, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: covidwho-1353458

RESUMO

The mortality risk factors for coronavirus disease (COVID-19) must be early predicted, especially for severe cases, to provide intensive care before they develop to critically ill immediately. This paper aims to develop an optimized convolution neural network (CNN) for predicting mortality risk factors for COVID-19 patients. The proposed model supports two types of input data clinical variables and the computed tomography (CT) scans. The features are extracted from the optimized CNN phase and then applied to the classification phase. The CNN model's hyperparameters were optimized using a proposed genetic-based adaptive momentum estimation (GB-ADAM) algorithm. The GB-ADAM algorithm employs the genetic algorithm (GA) to optimize Adam optimizer's configuration parameters, consequently improving the classification accuracy. The model is validated using three recent cohorts from New York, Mexico, and Wuhan, consisting of 3055, 7497,504 patients, respectively. The results indicated that the most significant mortality risk factors are: CD 8+ T Lymphocyte (Count), D-dimer greater than 1 Ug/ml, high values of lactate dehydrogenase (LDH), C-reactive protein (CRP), hypertension, and diabetes. Early identification of these factors would help the clinicians in providing immediate care. The results also show that the most frequent COVID-19 signs in CT scans included ground-glass opacity (GGO), followed by crazy-paving pattern, consolidations, and the number of lobes. Moreover, the experimental results show encouraging performance for the proposed model compared with different predicting models.

9.
Comput Biol Med ; 135: 104606, 2021 08.
Artigo em Inglês | MEDLINE | ID: covidwho-1293680

RESUMO

BACKGROUND AND OBJECTIVE: The impact of diet on COVID-19 patients has been a global concern since the pandemic began. Choosing different types of food affects peoples' mental and physical health and, with persistent consumption of certain types of food and frequent eating, there may be an increased likelihood of death. In this paper, a regression system is employed to evaluate the prediction of death status based on food categories. METHODS: A Healthy Artificial Nutrition Analysis (HANA) model is proposed. The proposed model is used to generate a food recommendation system and track individual habits during the COVID-19 pandemic to ensure healthy foods are recommended. To collect information about the different types of foods that most of the world's population eat, the COVID-19 Healthy Diet Dataset was used. This dataset includes different types of foods from 170 countries around the world as well as obesity, undernutrition, death, and COVID-19 data as percentages of the total population. The dataset was used to predict the status of death using different machine learning regression models, i.e., linear regression (ridge regression, simple linear regularization, and elastic net regression), and AdaBoost models. RESULTS: The death status was predicted with high accuracy, and the food categories related to death were identified with promising accuracy. The Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and R2 metrics and 20-fold cross-validation were used to evaluate the accuracy of the prediction models for the COVID-19 Healthy Diet Dataset. The evaluations demonstrated that elastic net regression was the most efficient prediction model. Based on an in-depth analysis of recent nutrition recommendations by WHO, we confirm the same advice already introduced in the WHO report1. Overall, the outcomes also indicate that the remedying effects of COVID-19 patients are most important to people which eat more vegetal products, oilcrops grains, beverages, and cereals - excluding beer. Moreover, people consuming more animal products, animal fats, meat, milk, sugar and sweetened foods, sugar crops, were associated with a higher number of deaths and fewer patient recoveries. The outcome of sugar consumption was important and the rates of death and recovery were influenced by obesity. CONCLUSIONS: Based on evaluation metrics, the proposed HANA model may outperform other algorithms used to predict death status. The results of this study may direct patients to eat particular types of food to reduce the possibility of becoming infected with the COVID-19 virus.


Assuntos
COVID-19 , Pandemias , Animais , Dieta , Dieta Saudável , Humanos , SARS-CoV-2
10.
Int J Imaging Syst Technol ; 31(2): 472-482, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: covidwho-1100864

RESUMO

Among Coronavirus, as with many other viruses, receptor interactions are an essential determinant of species specificity, virulence, and pathogenesis. The pathogenesis of the COVID-19 depends on the virus's ability to attach to and enter into a suitable human host cell. This paper presents a cockroach optimized deep neural network to detect COVID-19 and differentiate between COVID-19 and influenza types A, B, and C. The deep network architecture is inspired using a cockroach optimization algorithm to optimize the deep neural network hyper-parameters. COVID-19 sequences are obtained from repository 2019 Novel Coronavirus Resource, and influenza A, B, and C sub-dataset are obtained from other repositories. Five hundred ninety-four unique genomes sequences are used in the training and testing process with 99% overall accuracy for the classification model.

11.
PeerJ Comput Sci ; 7: e364, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1079813

RESUMO

BACKGROUND AND PURPOSE: COVID-19 is a new strain of viruses that causes life stoppage worldwide. At this time, the new coronavirus COVID-19 is spreading rapidly across the world and poses a threat to people's health. Experimental medical tests and analysis have shown that the infection of lungs occurs in almost all COVID-19 patients. Although Computed Tomography of the chest is a useful imaging method for diagnosing diseases related to the lung, chest X-ray (CXR) is more widely available, mainly due to its lower price and results. Deep learning (DL), one of the significant popular artificial intelligence techniques, is an effective way to help doctors analyze how a large number of CXR images is crucial to performance. MATERIALS AND METHODS: In this article, we propose a novel perceptual two-layer image fusion using DL to obtain more informative CXR images for a COVID-19 dataset. To assess the proposed algorithm performance, the dataset used for this work includes 87 CXR images acquired from 25 cases, all of which were confirmed with COVID-19. The dataset preprocessing is needed to facilitate the role of convolutional neural networks (CNN). Thus, hybrid decomposition and fusion of Nonsubsampled Contourlet Transform (NSCT) and CNN_VGG19 as feature extractor was used. RESULTS: Our experimental results show that imbalanced COVID-19 datasets can be reliably generated by the algorithm established here. Compared to the COVID-19 dataset used, the fuzed images have more features and characteristics. In evaluation performance measures, six metrics are applied, such as QAB/F, QMI, PSNR, SSIM, SF, and STD, to determine the evaluation of various medical image fusion (MIF). In the QMI, PSNR, SSIM, the proposed algorithm NSCT + CNN_VGG19 achieves the greatest and the features characteristics found in the fuzed image is the largest. We can deduce that the proposed fusion algorithm is efficient enough to generate CXR COVID-19 images that are more useful for the examiner to explore patient status. CONCLUSIONS: A novel image fusion algorithm using DL for an imbalanced COVID-19 dataset is the crucial contribution of this work. Extensive results of the experiment display that the proposed algorithm NSCT + CNN_VGG19 outperforms competitive image fusion algorithms.

12.
Computers, Materials, & Continua ; 66(2):1745-1755, 2021.
Artigo em Inglês | ProQuest Central | ID: covidwho-954493

RESUMO

Currently, COVID-19 is spreading all over the world and profoundly impacting people’s lives and economic activities. In this paper, a novel approach called the COVID-19 Quantum Neural Network (CQNN) for predicting the severity of COVID-19 in patients is proposed. It consists of two phases: In the first, the most distinct subset of features in a dataset is identified using a Quick Reduct Feature Selection (QRFS) method to improve its classification performance;and, in the second, machine learning is used to train the quantum neural network to classify the risk. It is found that patients’ serial blood counts (their numbers of lymphocytes from days 1 to 15 after admission to hospital) are associated with relapse rates and evaluations of COVID-19 infections. Accordingly, the severity of COVID-19 is classified in two categories, serious and non-serious. The experimental results indicate that the proposed CQNN’s prediction approach outperforms those of other classification algorithms and its high accuracy confirms its effectiveness.

13.
Neural Comput Appl ; 33(7): 2929-2948, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-898020

RESUMO

Globally, many research works are going on to study the infectious nature of COVID-19 and every day we learn something new about it through the flooding of the huge data that are accumulating hourly rather than daily which instantly opens hot research avenues for artificial intelligence researchers. However, the public's concern by now is to find answers for two questions; (1) When this COVID-19 pandemic will be over? and (2) After coming to its end, will COVID-19 return again in what is known as a second rebound of the pandemic? In this work, we developed a predictive model that can estimate the expected period that the virus can be stopped and the risk of the second rebound of COVID-19 pandemic. Therefore, we have considered the SARIMA model to predict the spread of the virus on several selected countries and used it for predicting the COVID-19 pandemic life cycle and its end. The study can be applied to predict the same for other countries as the nature of the virus is the same everywhere. The proposed model investigates the statistical estimation of the slowdown period of the pandemic which is extracted based on the concept of normal distribution. The advantages of this study are that it can help governments to act and make sound decisions and plan for future so that the anxiety of the people can be minimized and prepare the mentality of people for the next phases of the pandemic. Based on the experimental results and simulation, the most striking finding is that the proposed algorithm shows the expected COVID-19 infections for the top countries of the highest number of confirmed cases will be manifested between Dec-2020 and  Apr-2021. Moreover, our study forecasts that there may be a second rebound of the pandemic in a year time if the currently taken precautions are eased completely. We have to consider the uncertain nature of the current COVID-19 pandemic and the growing inter-connected and complex world, that are ultimately demanding flexibility, robustness and resilience to cope with the unexpected future events and scenarios.

14.
Interactive Learning Environments ; : No Pagination Specified, 2020.
Artigo em Inglês | APA PsycInfo | ID: covidwho-889367

RESUMO

ABSTRACT This study seeks to explore the effect of fear emotion on students' and teachers' technology adoption during COVID-19 pandemic. The study has made use of Google Meet© as an educational social platform in private higher education institutes. The data obtained from the study were analyzed by using the partial least squares structural equation modeling (PLS-SEM) and machine learning algorithms. The main hypotheses of this study are related to the effect of COVID-19 on the adoption of Google Meet as COVID-19 rise s various types of fear. During the Coronavirus pandemic, fear due to family lockdown situation, fear of education failure and fear of losing social relationships are the most common types of threat that may face students and teachers/educators. These types of fears are connected with two important factors within TAM theory, which are: perceived ease of use (PEOU) and perceived usefulness (PU), and with another external factor of TAM, which is subjective norm (SN). The results revealed that both data analysis techniques have successfully provided support to all the hypothesized relationships of the research model. More interesting, the J48 classifier has performed better than the other classifiers in predicting the dependent variable in most cases. (PsycInfo Database Record (c) 2020 APA, all rights reserved)

15.
Appl Soft Comput ; 97: 106754, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-799067

RESUMO

COVID-19 originally known as Corona VIrus Disease of 2019, has been declared as a pandemic by World Health Organization (WHO) on 11th March 2020. Unprecedented pressures have mounted on each country to make compelling requisites for controlling the population by assessing the cases and properly utilizing available resources. The rapid number of exponential cases globally has become the apprehension of panic, fear and anxiety among people. The mental and physical health of the global population is found to be directly proportional to this pandemic disease. The current situation has reported more than twenty four million people being tested positive worldwide as of 27th August, 2020. Therefore, it is the need of the hour to implement different measures to safeguard the countries by demystifying the pertinent facts and information. This paper aims to bring out the fact that tweets containing all handles related to COVID-19 and WHO have been unsuccessful in guiding people around this pandemic outbreak appositely. This study analyzes two types of tweets gathered during the pandemic times. In one case, around twenty three thousand most re-tweeted tweets within the time span from 1st Jan 2019 to 23rd March 2020 have been analyzed and observation says that the maximum number of the tweets portrays neutral or negative sentiments. On the other hand, a dataset containing 226,668 tweets collected within the time span between December 2019 and May 2020 have been analyzed which contrastingly show that there were a maximum number of positive and neutral tweets tweeted by netizens. The research demonstrates that though people have tweeted mostly positive regarding COVID-19, yet netizens were busy engrossed in re-tweeting the negative tweets and that no useful words could be found in WordCloud or computations using word frequency in tweets. The claims have been validated through a proposed model using deep learning classifiers with admissible accuracy up to 81%. Apart from these the authors have proposed the implementation of a Gaussian membership function based fuzzy rule base to correctly identify sentiments from tweets. The accuracy for the said model yields up to a permissible rate of 79%.

16.
Appl Soft Comput ; 98: 106742, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: covidwho-778427

RESUMO

In this paper, a novel approach called GSA-DenseNet121-COVID-19 based on a hybrid convolutional neural network (CNN) architecture is proposed using an optimization algorithm. The CNN architecture that was used is called DenseNet121, and the optimization algorithm that was used is called the gravitational search algorithm (GSA). The GSA is used to determine the best values for the hyperparameters of the DenseNet121 architecture. To help this architecture to achieve a high level of accuracy in diagnosing COVID-19 through chest x-ray images. The obtained results showed that the proposed approach could classify 98.38% of the test set correctly. To test the efficacy of the GSA in setting the optimum values for the hyperparameters of DenseNet121. The GSA was compared to another approach called SSD-DenseNet121, which depends on the DenseNet121 and the optimization algorithm called social ski driver (SSD). The comparison results demonstrated the efficacy of the proposed GSA-DenseNet121-COVID-19. As it was able to diagnose COVID-19 better than SSD-DenseNet121 as the second was able to diagnose only 94% of the test set. The proposed approach was also compared to another method based on a CNN architecture called Inception-v3 and manual search to quantify hyperparameter values. The comparison results showed that the GSA-DenseNet121-COVID-19 was able to beat the comparison method, as the second was able to classify only 95% of the test set samples. The proposed GSA-DenseNet121-COVID-19 was also compared with some related work. The comparison results showed that GSA-DenseNet121-COVID-19 is very competitive.

17.
Cmc-Computers Materials & Continua ; 65(1):193-203, 2020.
Artigo | WHO COVID | ID: covidwho-704389

RESUMO

People started posting textual tweets on Twitter as soon as the novel coronavirus (COVID-19) emerged. Analyzing these tweets can assist institutions in better decision-making and prioritizing their tasks. Therefore, this study aimed to analyze 43 million tweets collected between March 22 and March 30, 2020 and describe the trend of public attention given to the topics related to the COVID-19 epidemic using evolutionary clustering analysis. The results indicated that unigram terms were trended more frequently than bigram and trigram terms. A large number of tweets about the COVID-19 were disseminated and received widespread public attention during the epidemic. The high-frequency words such as "death", "test", "spread", and "lockdown" suggest that people fear of being infected, and those who got infection are afraid of death. The results also showed that people agreed to stay at home due to the fear of the spread, and they were calling for social distancing since they become aware of the COVID-19. It can be suggested that social media posts may affect human psychology and behavior. These results may help governments and health organizations to better understand the psychology of the public, and thereby, better communicate with them to prevent and manage the panic.

18.
Stoch Environ Res Risk Assess ; 34(10): 1681, 2020.
Artigo em Inglês | MEDLINE | ID: covidwho-680785

RESUMO

[This corrects the article DOI: 10.1007/s00477-020-01827-8.].

19.
Chaos Solitons Fractals ; 138: 110137, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: covidwho-650533

RESUMO

Nowadays, a significant number of infectious diseases such as human coronavirus disease (COVID-19) are threatening the world by spreading at an alarming rate. Some of the literatures pointed out that the pandemic is exhibiting seasonal patterns in its spread, incidence and nature of the distribution. In connection to the spread and distribution of the infection, scientific analysis that answers the questions whether the next summer can save people from COVID-19 is required. Many researchers have been exclusively asked whether high temperature during summer can slow down the spread of the COVID-19 as it has with other seasonal flues. Since there are a lot of questions that are unanswered right now, and many mysteries aspects about the COVID-19 that is still unknown to us, in-depth study and analysis of associated weather features are required. Moreover, understanding the nature of COVID-19 and forecasting the spread of COVID-19 request more investigation of the real effect of weather variables on the transmission of the COVID-19 among people. In this work, various regressor machine learning models are proposed to extract the relationship between different factors and the spreading rate of COVID-19. The machine learning algorithms employed in this work estimate the impact of weather variables such as temperature and humidity on the transmission of COVID-19 by extracting the relationship between the number of confirmed cases and the weather variables on certain regions. To validate the proposed method, we have collected the required datasets related to weather and census features and necessary prepossessing is carried out. From the experimental results, it is shown that the weather variables are more relevant in predicting the mortality rate when compared to the other census variables such as population, age, and urbanization. Thus, from this result, we can conclude that temperature and humidity are important features for predicting COVID-19 mortality rate. Moreover, it is indicated that the higher the value of temperature the lower number of infection cases.

20.
SN Comput Sci ; 1(4): 197, 2020.
Artigo em Inglês | MEDLINE | ID: covidwho-593627

RESUMO

COVID-19 is a pandemic that has affected over 170 countries around the world. The number of infected and deceased patients has been increasing at an alarming rate in almost all the affected nations. Forecasting techniques can be inculcated thereby assisting in designing better strategies and in taking productive decisions. These techniques assess the situations of the past thereby enabling better predictions about the situation to occur in the future. These predictions might help to prepare against possible threats and consequences. Forecasting techniques play a very important role in yielding accurate predictions. This study categorizes forecasting techniques into two types, namely, stochastic theory mathematical models and data science/machine learning techniques. Data collected from various platforms also play a vital role in forecasting. In this study, two categories of datasets have been discussed, i.e., big data accessed from World Health Organization/National databases and data from a social media communication. Forecasting of a pandemic can be done based on various parameters such as the impact of environmental factors, incubation period, the impact of quarantine, age, gender and many more. These techniques and parameters used for forecasting are extensively studied in this work. However, forecasting techniques come with their own set of challenges (technical and generic). This study discusses these challenges and also provides a set of recommendations for the people who are currently fighting the global COVID-19 pandemic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA